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VOLTAGE-CONTROLLED OSCILLATOR WITH
TIME-DELAY FEEDBACK

INTRODUCrION .

A voltage-controlled oscillator (VCO) with time-delay feedback has been designed as
a frequency-agile, noise-degenerated radar frequency source. This frequency source uses a
solid state VCO with a noise-degenerated negative feedback loop with an interferometer as
a frequency discriminator. Because of the periodicity of responses of the interferometer ,
the oscillator operation is stable at many frequencies across the band of interest . For this
reason , both low noise from the degeneration and frequency agility from the periodic
response are obtained in one source. This report analyzes the steady state and transient
responses of the frequency source. The steady state solution will provide information
necessary in choosing the loop parameters that set the noise degeneration level. The trans-
ient response yields information on loop response time, and thus the switching time needed
for frequency agility.

GENERAL DESCRIPTION

Figure 1 is a block diagram of a voltage-controlled oscillator (VCO) with a time-delay
feedback loop containing an in terferometer and a video amplifier. The interferometer ’s
output is proportional to the phase difference between the direct and delayed outputs
from the VCO. If the VCO output is given by cos(o.~t), the interferometer output after
the high-frequency component is filtered out , is given by

e( t )  = sin o.,t.

v . ( I )  wo~~
K2Sc

(t)

VIDEO DETECTOR I
AMPLIFIER I SHIFTER

— -J

Fig. 1 — Voltage-controlled oscillator with time-dela y feedback

Manuscript submitted June 27 , 1977.
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$‘ 180

• • 270

Fig. 2 — Inter ferometer response with
additional phase shift

Therefore , interferometer output voltage vs frequency is a sine wave, so responses repeat ,
spaced by a frequency equal to the inverse of the delay time , as shown in Fig. 2. For a
delay time of 25 ns, the periodicity equals 40 MHz. The whole response curve can be
shifted by adding additional phase shift in the direct path [11. A 90-degree phase shift
will shift the whole response pattern one-fourth of its period (10 MHz). In this manner ,
the interferometer can operate with a ±20-MHz pull-i n range and still produce a response
every 10 MHz across the band. Because of this periodicity of responses, stable operation
occurs at many frequencies across the band of interest , providing frequency agility.

ANALYSIS

The system shown in Fig. 1 was analyzed , with the input voltage as a step function
of an amplitude v, to study the effectiveness of the time delay feedback. When input
voltage v is zero , the output angular frequency of the VCO is assumed to be 

~~~ 
and is

related to time delay r as = 2irN/r , where N is an integer. When this relation holds,

~~ 
becomes one of the stable frequencies, and the output voltage of the interferometer

will be zero. Now , if input voltage u is applied , the output frequency of the VCO will
change. That change in frequency is given by

= —K 2 e~( t )  (1)

2
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where e~( t)  is the voltage at the VCO input and K 2 is the modulation sensitivity in radians
per volt.

Let 4 ( t )  represent the phase shift due to this frequency change during a time t. The
quantity .~( t) is given by

0 (t )  — L K 2 e~( t )  dt. (2)

Then , interferometer output voltage e( t) ,  after the high-frequency component is filtered
out , is

e( t )  = K 1 sinL0 (t) — çti(t — r )] , (3)

where K 1 is the phase-detector sensitivity constant in volts per radian.

For [0(t) — i~ ( t  — r)1 < 1, which is satisfied near the stable frequency of operation ,
one can approximate :

e( t )  K 1 [ 0( t )  — q~(t — r ) j .  (4)

Taking Laplace transforms of Eqs. (1), (2), and (4) yields

= -K2 E r( s) (5)

4 ’(s)  —K2 E0(s) / s  (6)

E(s) = K 1 [ 4 (s) —4 ’(s)e T 8 l .  (7)

In addition , From Fig. 1 we have

Er (s)  = + E (s )  G(s) ,  (8)

where G(s) is the transfer function of the video amplifier.

Using Eqs. (5) to (8), we can show that

-K 2 u
~ f 2 (s )  = . (9)

K1K2 G( s)I 1—e ’51 + ~

The amplifier in the feedback loop is assumed to be a combination video amplifier
and low-pass filter with combined transfer function

a
G(s) = (10)

g + a

where G0 is the low-frequency gain of the amplifier and a is the 3-dB cutoff point.

3
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Substituting Eq. (10) in Eq. (9) gives the normalized response

F (s) _
~~~~ !) = S + a  (11)

—K 2 v ~2 + act + A (1 — e Ts)

where A = K 1 K 2 G0a.

Steady State Solution

A steady state solution can be obtained easily from Eq. (11), as

~~w
(Oo

~ 1Lim 1(t) = Lim sF(s)  = . (12)
-K2 v ,-

~~~~~~ ~~~~~~~~~ 
K 2 K 2 G0 r + 1

This stead y state solution can be used [2] to find the amount of VCO noise degenera-
tion possible with a time-delay feedback system. Let i~sf ~~ represent the FM noise of
VCO without feedback. The corresponding equivalent noise voltage at the VCO input is
21r~~f 05~/ ( -K 2) .  Let E~f be the VCO FM noise with feedback. Then , substituting
u = 2ir

~~f05~f(-K 2 ) and ~1w(o°) = 2~~~f in Eq. (12) ,  we obtain

= ~~(osc (13)
K 1 K 2 G0 r + 1

From Eq. (13) it may be noted that the VCO noise is degenerated by a factor of
(K 1 K 2 G0 r + 1). Therefore , to reduce VCO noise , it is necessary that

(K 1 K 2 G~, r + 1) ~~
> 1. (14)

Stability Condition

The condition for stability of the feedback system is discussed in Appendix A and is
given by

K 1 K2 G0 ar 2 < -ir 2 / 2 , (15)

which is identical to Eq. (All).

For the system to be stable and produce noise degeneration , K 1, K 2,  Gf~ a, and r
should be chosen such that the conditions in both Eqs. (14) and (15) are satisfied .

Transient Response
Formally, the inverse Laplace transform of Eq. (11) gives the transient response.

However , the inverse transform is not readily available. The following procedure [3) is
used to obtain the transient response. Repeating Eq. ( i i ) ,  we have4
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s + a
F(s)  = ___________________ . (16)

s2 + s c t + A _ A e TS

Let z = ~2 + sa + A.  Then

F(s) = S
~~~ 

1 
. (17)

1 — e Ts
z

If the expansion of the type

= 1 + x + x2 +1 - x

is used, Eq. (17) becomes

s + a ” A A2
F(s) [1 + _ e Ts + — e 2

~~ + ... ‘
~~
. (18)

z z

Taking the inverse Laplace transform of Eq. ( 18) yields

f ( t )  = f 1( t)  + Au(t — r~f2 (t — r)  + A 2 u(t — 2r) f 3 ( t  — 2r) + ... (19)

where

f~(t)  = L~ F 
S + ct 

1 (20)
L(s 2 + s c t + A ) ° i

and u ( t)  is a unit step function.

The transient response given in Eq. (19) appears to contain an infinite number of
terms. However , for any given finite time t , only a finite number of terms are nonzero.
Also, each individual term has a physical significance related to the time-delay feedback.
In the time range 0 ~ t < r , only the first term is nonzero and the rest of the terms are
zero , so that the first term gives the system response before the VCO output is applied
to the phase detector through the delayed path. In the range r ‘~~~ t <2r , the signal
through the delayed path is applied to the phase detector , and the transient response is
represented by the first two terms, since the remaining terms are still zero. In general ,
for range (M — l )r  s~ t < Mr , the first M terms give the transient response because the
higher order terms are still zero .

The transient response is not yet complete, because the inverse transform shown in
Eq. (20) is not readily available . A closed form solution for f ~( t )  ir obtained by using the
following procedure. First , consider the inverse Laplace transform,

S~( t ) L h I  1

L~~
2 + act + A) ”

This can be written 
a s 5
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S~(t) = L~~ [ 1 (21)
[(s + a)” (s + b)hl]

where a =~~
_ j

~~ , b =~~~+ iw 1,  and w1 = 

~~~~~~~~~~~~~~~~~

. It will be shown later that a 2 /44A.

Therefore , w1 is real.

The inverse Laplace transform shown in Eq. (21) is readily available [4] .  It is given
by

( o + b ) f

~~ 
= ~/i / ~ 

n- ½ 
e 2 

~ 
(a_+ b

~ (n — 1)! k~a — b) “-“4 \ 2

where ‘1 I . ’,~2 is a modified Bessel function of the first kind. Substituting for a and b from
Eq. (21), we obtain

at
t f l ”4 -—

S,,( t )  = 

~~~~~~ ~ 
e 2 J ,,~~ (w 1t) (22)

where J ,, ½ is the Bessel function of the first kind.

From Eqs. (20) and (21) it may be noted that f ,, ( t ) ,  which can be obtained if s~( t)
is known , is given by

f~( t)  = s~ ( t)  — s~ (+0) + a s,,( t)  (23)

where s~( t)  is the first derivat ive of s~( t) .

By noting s,,(+0 ) = 0 and substituting s~( t)  from Eqs. (22) and (23) and simplifying,
we can show that

f~( t)  = 
(~~~ 1) ’ (

t ) n -½  e~~~ [w i Jn 3i 2 (w i t)  +~~~Jn i i 2 (w i t )] . (24)

In terms of spherical Bessel functions j ,,~ one can show 151 that

f~( t)  (n - 1)! (~~~~) “~~(w l t )  e~~~ [In~2(w i t) +~~~~~ Jn~~i (W i t)] (25)

Hence, the transient response is given by Eq. (19), with f ~( t)  as shown in Eq. (25).

6
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NUMERICAL RESULTS

With Eqs. (19) and (25), the transient response is computed for typical values of the
system parameters , K 1 = 0.2 V/rad , K 2 = 3.5 X 108 rad/sV, a = 6.283 X ~~~ radfs
(corresponds to an amplifier filter bandwidth of 1 kHz) . and r = 25 ns. Figure 3 shows
the normalized transient response with the above parameters and for the amplifier gains

r • 25 n$

2 Q ‘6283 RAD, ,
Ar ‘0275

1 ,0

08

0869
~ 06 -

‘1 1)4 2 7 5

~ 0 2
z —

~ 869 
________

cn o —
(aa:
~ 

-02
(a

~ -044

~~- 0 6
2

- 0 8

— I c  I
0 10 20 30 40 50 60 10

TIME (a,)

Fig. 3 Tian sient response

of 60 dB (G~ = l0~ ), 70 dB (G0 = 3.162 X 10~ ), 80 dB (G 0 = 10~ ), 85.0823 dB (G0
1.7952 X 10k ), and 90 dB (G~ 

= 3.162 X 10~ ). The corresponding values of Ar2
= K 1 K 2 G0ctr2 ) are 0.275, 0.869, 2.75 , ir2 /2 , and 8.69. For the system to be stable,

Ar 2 must be less than ir2/ 2 ( = 4.9348). From Fig. 3, it is evident that for Ar 2 >
4.9348 the system transient response is oscillatory with increasing amplitude with time. This
indicates that the system is unstable. For Ar 2 = ,r2/2 , the response is oscillatory with
approximately constant amplitude , indicating that the stability condition given by Eq. (15) is
highly accurate. For Ar2 = 2.75 , the transient response is oscillatory , but the oscillations
are damped with time, suggesting that the system is stable. As the amplifier gain is reduced ,
making Ar 2 smaller , the damped oscillations almost vanish for Ar2 = 0.869 (which may be
called the critically damped case). For smaller values of Ar2 , the transient response decreases
with time (similar to an exponentially decreasing curve) and takes longer to reach steady state.

These results indicate that a value for Ar2 
~ 1 may be a best compromise for faster

loop response and acceptable damped oscillations. For the critically damped ease, the
loop response reaches steady state in a time span of about 8r. For a given value of Ar 2 ,
the loop response time is smaller for smaller values of r , as shown in Fig. 4. However ,

7



RAO AND WATERS

~ 10
Ar 2 .0 869

08  
r 2 5 n5

~a 06

0 4  r ’)2 5
a: 0 2
0
Ia

0 
I I I I I

II) 20 30 40 50 60 10 80 90 tOO ItO 120 130 40
a

- 0 2  TI ME Ins)
z
-04

Fig. 4 -
~~ Frequency response with r as a parameter

if the time is normalized with respect to r , the transient responses for both cases are
approxima tely similar , ex ( & ’p t that the steady state responr is smaller for smaller r. Since
A = K 1 K 2 G0a , ch anging K 1 and K 2 will have the same effe as changing G0 . However ,
changi ng a has approximat ely the same effect on the transi t response as changing G~ ,
bu t the steady state response is independent of a. For these rca- ins . a should be chose n
as small as possible , and K 1 K 9 G 0 should he chosen as large as possible , for a given r Such
that Ar 2 = 1 and K 1 K 2 G0 T ~ 1, which will satisfy the requirements of noise degeneration
and system stabili ty con ditio n s given by Eqs. ( 14) and (15).

CONCLUSIONS

A voltage-controlled oscillator with time-delay feedback has been analyzed. By properl y
choosing system parameters, low noise from the degeneration and frequency agility from the
periodic response can be obtained in one source. The conditions for system stability and the
amount of noise degeneration are expressed in terms of system parameters. Effects of differ-
en t parameters on system stability and noise degeneration are discussed in detail. It is shown
tha t the open-loop gain should be chosen as large as possible for good noise degeneration ,
and the bandwidth should be adj usted to meet the stability condition.
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Appendix A

STABILITY CRITERION

The Nyquist stability criterion is used to find the condition under which the feedback

system is stable and to identify the system parameters on which this condition depends.

This criterion furnishes a graphical method for determining the stability of a system. The

system is stable if a plot of its open-loop transfer function Z (s)  for a succession of values

of s, encircling the entire right half of the s-plane in the clockwise direction, makes a

number of counterclockwise revolutions about the critical point (-1 + J O )  equal to the

number of the poles of Z(s) in the right half of the s-plane.

(I)

AMPLIFIER SHIFTER 
J

Fig. Al — Voltage-controlled oscillator with time-delay feedback

For the system in Fig. Al , the open-loop transfer function is given by

A~1_ c Tsl
Z( s)  = 

/ (Al )
s(s + a)

From Eq. (Al), note that there are no poles in the right half of the s-plane. The only

pole at S = —a is in the left half. Also , there are no poles on the imaginary axis. Since

Z( s) becomes zero fo r s —~ oo, to apply the Nyquist criterion one needs a polar plot of

Z(s)  with s jw and for the range of values ~oo w ~ o~ only. As can be noted , a polar

plot for the frequency range _oo to 0 is the mirror image about the horizontal axis of

the plot for the frequency range 0 to oo• Thus , to evaluate the polar plot of a transfer

functioi~ the only frequency range to be considered is from 0 to 0o~ By substituting

s J o., in Eq. (Al ) and finding real part ZR ( j w)  and imaginary part Z1 (jo 4 of transfer

function Z ( j w ) ,  it can be shown that

A ( sinwr -
— ( a T  -2 s in 2 — l  (A2)

a2 + w 2 
~ 

wr 2 /

—A [ . sin(wr12) sin(wr/2)l
Z1 (j w)  = I sinu’r + ar — i. (A3)

a2 + ~~
2 L (wr/2) j

9
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From Eqs. (A2) and (A3), note that there is no simple way of sketching the polar
plot if parameters A, a , and r are not specified. Fortunatel y, for the system under con-
sideration the range of parameters is such that a simplification is possible. For ar of the
order of iO~~ , the first term in the parentheses on the right hand side of Eq. (A2) can be
neglected , except possibly when wr 2N~r. (In that case , both terms will be close to
zero and ZR ( j w) will be very small.) Similarl y, the second term in the brackets of Eq. (A3)
can be neglected , except possibly at or very near wr = Nir . In that case, both terms will be
very small , which in tur n makes Z j smal l . These approxi mations and observat ions are used
only to simplify the procedure in obtaining the polar plot. No approximation is needed in
obtaining the exact condition for stability , as wi ll be shown later. Keeping aside the term

+ o.,2), which is common for both ZR and Z1, it may be noted that ZR varies as
-.2 sin 2 (wr/2) and Z1 varies as —sin(o.,r). These two functions are sketched in Fig. A2 as a
fu nction of wr.

2.0 — S I N )w r )

.~: 
C r /2 )  

Fig. A 2 —  
the f ctor ~%/(~~ 

and Z1, except

In the range of parameters of interest , a is of the order of l0~ and r is of the order
of 10-8 . Therefore , for wr > ir/2 , w ~~‘ a and the factor A/ (a 2 + w2)  A/w 2 . Using
these observations and Fig. A2 , one can sketch the polar plo t of Z ( j w ),  which is shown
in Fig. A3 for the range 0 ~ w <~~. For the range ~~oo < w ~ 0, the polar diagram will
be the mirror image abo ut the ZR axis, and it is not shown. From the sketch in Fig. A3

2 1

Fig. A3 — Sketch of a polar plot for
Z ( j w) ,  for A > A~ /

it is clear that if the real part ZR < — 1  ( I Z R I ~ i) when Z1 = 0, the critical point is
encircled counterclockwise by the polar plot. Therefore , the system will be unstable. Since
the magnitude of ZR depends on A, for the system to be stable A should be smaller than
that for which ZR = -l and Z1 = 0.

Next , it is possible to find the value of A corresponding to ZR = -1 and Z1 = 0. This
will be done using Eqs. (A2) and (A3), first without making any approximations. Equating
Z, = 0, we obtain from Eq. (A3)

10
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0 .5 CA)Tsinwr = —2 — sin- — . (A4)2

Equating ZR = -1, we obtain from Eq. (A2)

A (a .
— sinwr — 2sin- — = -1. (A5)

a2 + w 2 2/

Substituting from Eq. ( A4) for sino.,r in Eq. (AS) yields

22A sin- -~- o . , 
- (A6)

From Eqs. (A4) and (A6), we obtain

ac o s — = — (A7)2

or 

• ~~ ~~~~~~~~~~~~~ ~_ ai~~~~~ ) 
(A8)

where o.i~. is the freq uency at which 2R = -1 and Z1 = 0, for given values of r , a , and A.
Substituting w~ from Eq. (A8) for w in Eqs. ( A6) and (A7 ), we obtai n

~./2A a2 w~ ~~cos~~ (_ c r i~/ ~~r ). (A9 )

Equation (A9) is the exact stability condition from which can be found the value of
A = A~ that satisfies Eq. (A9 ) for given values of a and r. The system will then be stable
if the parameters are chosen such that A <A c. However , Eq. (A9 ) is a transcedental equa-
tion that is difficult to solve and does not provide convenient interpretation. Fortunately,
for the range of system parameters in which we are interested , a2 ‘~~ 2A , which allows us
to neglect a 2 in Eq. (A9) and approximate cos 1 (_ a/ ~/ ~~~) ir/2. Then , from Eq. (A9)
we have

A~ ir2 /2r 2 (AlO)
and

w~~~~1r/ r .

There fore , for the system to be stable , the system parameters should be chosen such that

Ar 2 < ir 2 /2. (All)

The numerica l results presented in this report validate the accuracy of the approxima-
tions made in arriving at Eq. (All).

11


